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Abstract. We show that the Heisenberg-type algebra describing the first levels of the quantum harmonic
oscillator on a circle of large length L is a deformed Heisenberg algebra. The successive energy levels of
this quantum harmonic oscillator on a circle of large length L are interpreted, similarly to the standard
quantum one-dimensional harmonic oscillator on an infinite line, as being obtained by the creation of a
quantum particle of frequency w at very high energies.

1 Introduction

The perspective of experimental results coming from a
new generation of particle accelerators has enhanced the
interest on the question of whether one needs to intro-
duce new concepts at very high energies. For a long time
there has been interest [1] in this question in connection
with the fact that it seems to be necessary to take new
routes in order to overcome the incompatibility between
general relativity and quantum mechanics at the Planck
scale, where gravitational forces become relevant in quan-
tum processes.

Among the present attempts to describe physics at the
Planck scale, superstring theory [2] seems to be the most
promising one. However, there is a vast range of energy
from the present accelerators energies (≈ 103 GeV) to the
Planck energy (1019 GeV) where it is believed that there
is room for surprises [3,2]. It is also believed that field
theories based on deformed algebras can play an impor-
tant role in describing physics in this vast energy range
[4]. These algebras have a parameter, known as the de-
formation parameter, which is expected to regularize the
ultraviolet divergences in deformed field theories [5].

Physicists have always considered deformations, since
nature seems to choose this route whenever possible. For
example one can interpret special relativity and quantum
mechanics as very successful deformations, recovering the
undeformed classical theories for c → ∞ and � → 0 re-
spectively. In the last years, there has been an increas-
ing interest in generalized statistical mechanics which is a
deformation of the Boltzmann–Gibbs statistics [6]. There
are several physical systems, mainly those with long-range
interactions, that are more appropriately treated by gen-
eralized statistical mechanics [7].
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A generalization of Heisenberg algebra describing the
algebraic structure of a class of one-dimensional quantum
systems has recently been constructed [8]. This class of
one-dimensional quantum systems is characterized by a
spectrum where successive energy levels are related by
εn+1 = f(εn) [9]. The generators of this algebraic structure
is given by ladder operators and the Hamiltonian operator
of the system under consideration. Among the systems in
this class we also find the well-known q-oscillators [10]. A
similar generalization was also constructed for the su(2)
algebra giving rise to a non-linear generalization of the
su(2) algebra containing the suq(2) algebra as a particu-
lar case [11].

We show in this paper that the Heisenberg-type alge-
bra of the quantum harmonic oscillator on a circle of large
length L is a deformed Heisenberg algebra. This deformed
Heisenberg algebra, that belongs in the class of generalized
Heisenberg algebras we mentioned before, comes from an
interpretation of quantum particles at very high energies
we suggest herein. What we do is to consider the first lev-
els of the one-dimensional quantum harmonic oscillator on
a compact interval of the real line with asymptotic length
L where the successive energy levels are interpreted, as in
the standard quantum one-dimensional harmonic oscilla-
tor on the infinite line, as being obtained by the creation
of a quantum particle of frequency ω at very high ener-
gies. The deformation parameter of the Heisenberg-type
algebra, describing the first levels of the one-dimensional
harmonic oscillator on the interval of the real line of length
L, is given by π/L such that when L → ∞ we recover the
standard Heisenberg algebra.

In Sect. 2, we review the generalized Heisenberg alge-
bra. In Sect. 3, we discuss a model of a quantum parti-
cle at very high energies and also a particular asymp-
totic solution to Mathieu’s equation that it is shown to
correspond to the first energy levels of the quantum me-
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chanical equation of the one-dimensional quantum har-
monic oscillator defined on a real interval of length L with
L � 1. In Sect. 4, we construct the Heisenberg-type al-
gebra that describes the particular asymptotic solution
of the one-dimensional quantum harmonic oscillator on L
and present a physical realization of the ladder operators
of this Heisenberg-type algebra. Using the physical real-
ization of the ladder operators presented in the previous
section, in Sect. 5 we construct a free quantum field theory
based on the deformed Heisenberg algebra under consid-
eration. Section 6 is devoted to our final comments.

2 Generalized Heisenberg algebras

Let us consider an algebra generated by J0, A and A† and
described by the relations [8]

J0A
† = A†f(J0), (1)

AJ0 = f(J0)A, (2)[
A,A†] = f(J0) − J0, (3)

where † is the Hermitian conjugate and, by hypothesis,
J†

0 = J0, and f(J0) is a general analytic function of J0.
We can see that the generators of the algebra trivially
satisfy the Jacobi identity

[[Jl, Jm] , Jn] + cyclic permutations = 0, (4)

where l, m, n = 0, ±, with J+ = A† and J− = A. In
order to prove this, first note that the only non-trivial
part of this identity is obtained when the sub-indices are
all different, giving[

[J0, A] , A†] + [[
A†, J0

]
, A

]
= 0. (5)

We now rewrite the algebraic relations in (1)–(3) as
commutators,[

J0, A
†] = A†(f(J0) − J0) = A† [

A,A†] , (6)

[A, J0] = (f(J0) − J0)A =
[
A,A†]A. (7)

Substituting (6) and (7) into (5) we get[
A†, [J0, A]

]
+

[
A,

[
A†, J0

]]
= − [

A†,
[
A,A†]]A − A† [

A,
[
A,A†]]

= − [
A†A,

[
A,A†]] = 0, (8)

since, from (1) and (2) we have

f(J0)A†A = A†Af(J0). (9)

Using the algebraic relations in (1)–(3) we see that the
operator

C = A†A − J0 = AA† − f(J0) (10)

satisfies
[C, J0] = [C,A] =

[
C,A†] = 0, (11)

being thus a Casimir operator of the algebra.

We analyze now the representation theory of the alge-
bra when the function f(J0) is a general analytic function
of J0. We assume we have an n-dimensional irreducible
representation of the algebra given in (1)–(3). We also as-
sume that there is a state |0〉 with the lowest eigenvalue
of the Hermitian operator J0,

J0|0〉 = α0|0〉. (12)

For each value of α0 we have a different vacuum, thus a
better notation could be |0〉α0 but, for simplicity, we shall
omit the subscript α0.

Let |m〉 be a normalized eigenstate of J0,

J0|m〉 = αm|m〉. (13)

Applying (1) to |m〉 we have

J0(A†|m〉) = A†f(J0)|m〉 = f(αm)(A†|m〉). (14)

Thus, we see that A†|m〉 is a J0 eigenvector with eigen-
value f(αm). Starting from |0〉 and applying A† succes-
sively to |0〉 we create different states with J0 eigenvalue
given by

J0
(
(A†)m|0〉) = fm(α0)

(
(A†)m|0〉) , (15)

where fm(α0) denotes the mth iterate of f . Since the ap-
plication of A† creates a new vector, the J0 eigenvalue of
which has iterations of α0 through f augmented by one
unit, it is convenient to define the new vectors (A†)m|0〉 as
proportional to |m〉 and we then call A† a raising operator.
Note that

αm = fm(α0) = f(αm−1), (16)

where m denotes the number of iterations of α0 through
f .

Following the same procedure for A, applying (2) to
|m+ 1〉, we have

AJ0|m+ 1〉 = f(J0) (A|m+ 1〉) = αm+1 (A|m+ 1〉) ,
(17)

showing that A|m+1〉 is also a J0 eigenvector with eigen-
value αm. Then, A|m+1〉 is proportional to |m〉, A being
a lowering operator.

Since we consider α0 the lowest J0 eigenvalue, we re-
quire

A|0〉 = 0. (18)

As shown in [12], depending on the function f and its
initial value α0, it may happen that the J0 eigenvalue
of state |m+ 1〉 is lower than that of state |m〉. Then, as
shown in [8], given an arbitrary analytical function f (and
its associated algebra in (1)–(3)) in order to satisfy (18),
the allowed values of α0 are chosen in such a way that the
iterations fm(α0) (m ≥ 1) are always bigger than α0; in
other words, (18) must be checked for every function f ,
giving consistent vacua for specific values of α0.

As proven in [8], under the hypothesis stated previ-
ously1, for a general function f we obtain

J0|m〉 = fm(α0)|m〉, m = 0, 1, 2, · · · , (19)
1 Namely, that J0 is Hermitian and we can assume the exis-

tence of a vacuum state



M.A. Rego-Monteiro: The quantum harmonic oscillator on a circle and a deformed Heisenberg algebra 751

A†|m − 1〉 = Nm−1|m〉, (20)
A|m〉 = Nm−1|m − 1〉, (21)

where N2
m−1 = fm(α0) − α0. Note that for each function

f(x) the representations are constructed by the analysis
of the above equations as done in [8] for the linear and
quadratic f(x).

When the functional f(J0) is linear in J0, i.e., f(J0) =
q2J0 + s, it was shown in [8] that the algebra in (1)–(3)
recovers the q-oscillator algebra for α0 = 0. Moreover, as
shown in [8], where the representation theory was con-
structed in detail for the linear and quadratic functions
f(x), the essential tool in order to construct representa-
tions of the algebra in (1)–(3) for a general analytic func-
tion f(x) is the analysis of the stability of the fixed points
of f(x) and their composed functions.

We showed in [8,9] that there is a class of one-dimen-
sional quantum systems described by these generalized
Heisenberg algebras. This class is characterized by those
quantum systems having energy eigenvalues written as

εn+1 = f(εn), (22)

where εn+1 and εn are successive energy levels and f(x)
is a different function for each physical system. This func-
tion f(x) is exactly the same function as appears in the
construction of the algebra in (1)–(3)! In the algebraic de-
scription of this class of quantum systems; J0 is the Hamil-
tonian operator of the system, A† and A are the creation
and annihilation operators. This Hamiltonian and the lad-
der operators are related by (10) where C is the Casimir
operator of the representation associated with the quan-
tum system under consideration.

3 The harmonic oscillator on a large circle

The quantum harmonic oscillator is very important in
physics. Due to the fact that their energy eigenvalues are
given by En = (n + 1/2)�ω, their successive energy lev-
els are interpreted as being obtained by the creation of a
quantum particle of frequency ω. One can say that associ-
ated to the one-dimensional quantum harmonic oscillator
there is an useful definition of a quantum particle. We re-
call that this definition is used in the standard construc-
tion of a quantum field theory through the ladder opera-
tors of the one-dimensional quantum harmonic oscillator
[13].

Now, suppose we want to describe the interaction of
quantum particles at very high energies (energies higher
than 103 GeV). We know that this very high energy in-
teraction will simulate the circumstances of the early uni-
verse. Thus, the definition of a quantum particle used at
this very high energy interaction must be consistent with
the definition of a quantum particle in the early universe.
But since the universe under this circumstance has a scale
factor [14] smaller than today’s factor, it can be inap-
propriate to use the standard harmonic oscillator, that is
defined on an infinite line, as a definition of a quantum
particle at this very high energy scale.

We are going to discuss an equation defined on an in-
terval of length L that under certain circumstances re-
produces the ordinary harmonic oscillator in the limit
L → ∞. It is convenient to know how to describe quantum
mechanics on a periodic line and here we shall follow the
Ohnuki–Kitakado formalism [15]. According to this for-
malism there are inequivalent quantum mechanics on S1

(periodic line) depending on a parameter α (0 ≤ α < 1).
The momentum operator G on S1 in the coordinate rep-
resentation is given in this formalism by [15,16]

G −→ 1
i
d
dθ

+ α, 0 ≤ α < 1, (23)

and the coordinate operator is given in terms of the uni-
tary operator W

W −→ eiθ. (24)
Let us construct the following equation on S1:

G2Ψ +K
[
W +W †]Ψ = εΨ, (25)

where G and W are defined above2. In order to have the
above equation in the coordinate representation we sub-
stitute (23) and (24) in (25) for α = 0; we obtain

d2Ψ(θ)
dθ2 + (ε − 2K cos θ)Ψ(θ) = 0, (26)

with Ψ(θ = 0) = Ψ(θ = 2π). This equation can be rewrit-
ten as

d2Ψ(θ̄)
dθ̄2

+ (4ε − 8K cos 2θ̄)Ψ(θ̄) = 0, (27)

where Ψ(θ̄ = 0) = Ψ(θ̄ = π), which is the well-known
Mathieu equation that first appeared in 1868 in the study
of the vibrations of a stretched membrane of elliptic cross-
section [17]. Mathieu’s equation is an important equation
in physics arising in the study of a variety of physical
problems, from ordered crystals with the potential cos 2x
[18] to the wave equation of scalar fields in the background
of a D-brane metric [19]. Note that this is one possible
equation on a periodic line since we chose for simplicity
α = 0 in (26). According to Ohnuki–Kitakado’s formalism
[15] there are inequivalent quantum mechanics on S1 for
each value of the parameter α (0 ≤ α < 1).

In order to consider the limit of (26) when the radius
of the circle goes to infinity we perform the change of
variables

θ =
π

L
x+ π, −L ≤ x ≤ L. (28)

Using (28), (26) becomes

d2Ψ

dx2 +
(
E +

2π2

L2 K cos
π

L
x

)
Ψ = 0, (29)

where E = π2ε/L2. Now, using a trivial trigonometric
identity and calling λ ≡ E + 2π2K/L2 we obtain

d2Ψ

dx2 +

[
λ − π4

L4Kx2
(
sinπx/2L
πx/2L

)2
]
Ψ = 0. (30)

2 It would be also possible to define an equation with
quadratic powers of W and W †; the above equation is the
simplest one
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The well-known Schrödinger’s equation for the har-
monic oscillator,

d2Ψ

dx2 +
(
λ − x2)Ψ = 0, (31)

can be obtained for K = L4/π4 in (30), if L → ∞, apart
from a trivial energy renormalization (when x is not of
order of L that is infinite).

Suppose now we consider Mathieu’s equation for K =
L4/π4 and L asymptotic. In this case the first levels are
concentrated in values x 
 L; thus, according to the pre-
vious discussion, these energy levels, that we call εLn , will
correspond to the energy levels of the standard harmonic
oscillator when L → ∞. Now, analogously to the defi-
nition of a quantum particle through the ordinary quan-
tum harmonic oscillator, we define n quantum particles
at very high energies as having energy εLn . By consistency,
εL→∞
n − εL→∞

0 = n(εL→∞
1 − εL→∞

0 ).
As a matter of fact, there is a solution by Ince and

Goldstein [20,21,17] to Mathieu’s equation, (26), for
asymptotic values of K. Their expansion for ε, the char-
acteristic values of the equation, for our case of interest,
i.e, K = L4/π4, gives [21]

λn = νn − a2

32
(
ν2

n + 1
)
+ · · · , (32)

where νn = 2n + 1 and a = π/L. Note that the dots in
the above equation means higher orders in a. For L →
∞, (a → 0) we recognize the energy eigenvalues of the
harmonic oscillator.

The above solution corresponds to the energy levels of
Mathieu’s equation when the potential is very high, i.e,
when a4(2n+1)2/16 is very small [20,21]. Note that, even
if L is large, leading to a localization of the solution, this
solution is periodic with period 2L.

4 Deformed Heisenberg algebra
and its physical realization

The asymptotic solution [20,21,17] of the characteristic
values of Mathieu’s equation we presented in the last sec-
tion, (32), can be interpreted as a deformation of the
harmonic oscillator with deformation parameter equal to
a = π/L. Moreover, as shown in the last section, the so-
lutions to Mathieu’s equation, (26), with K = L4/π4 and
for x 
 L, correspond to the solutions to the harmonic
oscillator on S1.

In Sect. 2, we presented a class of algebras that de-
scribes Heisenberg-type algebras for a class of one-dimen-
sional quantum systems. We are going to show in this sec-
tion that the asymptotic solution to Mathieu’s equation
we presented in the last section belongs to this class of
algebras. In other words, we shall construct a Heisenberg-
type algebra, an algebra with creation and annihilation
operators, for the Ince–Goldstein solution (32) to the har-
monic oscillator on S1 and we shall find the characteristic
function f(x) (see (1)–(3)) for this algebra. Furthermore,

we shall also propose a realization, as in the case of the
standard harmonic oscillator, of the ladder operators in
terms of the physical operators of the system.

As described in [9,22] the first thing we have to do in
order to describe the Heisenberg-type structure of a one-
dimensional quantum system is to relate the energy of the
system for two arbitrary successive levels (see (22)). For
the energy spectrum given in (32), i.e,

εLn = n+
1
2

− a2

64
(
(2n+ 1)2 + 1

)
+ · · · , (33)

(the dots, here and in what follows, mean higher orders in
a) we obtain

εLn+1 = εLn + 1 − a2

8
(n+ 1) + · · · . (34)

Thus, we have to invert (33) in order to obtain n in terms
of εLn . Taking n from (33) we get

εLn+1 ≡ f(εLn) = εLn + 1 − a2

16
(
2εLn + 1

)
+ · · · . (35)

According to [20,21], this solution is valid when a4(2n +
1)2/16 is small. Thus, since a = π/L is considered very
small, n cannot be very large.

Now, if we assume that εLn is the eigenvalue of operator
J0 on state |n〉 we identify the f(x) appearing in (19)–
(21) with the one in (35) for the quantum system under
consideration. Then, the algebraic structure describing the
quantum system under consideration is obtained using the
f(x) defined in (35) in (1)–(3) and can be written as

[
J0, A

†] = A† − a2

16
A†(2J0 + 1) + · · · , (36)

[J0, A] = −A+
a2

16
(2J0 + 1)A+ · · · , (37)

[
A,A†] = 1 − a2

16
(2J0 + 1) + · · · , (38)

where, according to (19)–(21), A and A† are the ladder
operators for the system under consideration, i.e, A† when
applied to state |m〉, that has J0 eigenvalue εLm, gives,
apart from a multiplicative factor depending on m, state
|m + 1〉 that has energy eigenvalue εLm+1; with a similar
role played by A.

Note that, when a → 0 (L → ∞), we reobtain the well-
known Heisenberg algebra, as we should, since we showed
in the previous section that Mathieu’s equation, (26), for
K = L4/π4 = a−4 gives the well-known Schrödinger’s
equation for the harmonic oscillator, (31), in this limit.

The next step we have to do is to realize the operators
A, A† and J0 in terms of physical operators as in the case
of the one-dimensional harmonic oscillator, and as was
done in [9,22] for the square-well potential. To do this,
we briefly review the formalism of non-commutative dif-
ferential and integral calculus on a one-dimensional lattice
developed in [23,24]. Let us consider an one-dimensional
lattice in a momentum space where the momenta are al-
lowed only to take discrete values, say p0, p0 + a, p0 +2a,
p0 + 3a etc., with a > 0.
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The non-commutative differential calculus is based on
the expression [23,24]

[p,dp] = dpa, (39)

implying that

f(p)dg(p) = dg(p)f(p+ a), (40)

for all functions f and g. We introduce partial derivatives
by

df(p) = dp(∂pf)(p) = (∂̄pf)(p)dp, (41)

where the left and right discrete derivatives are given by

(∂pf)(p) =
1
a
[f(p+ a) − f(p)], (42)

(∂̄pf)(p) =
1
a
[f(p) − f(p − a)], (43)

that are the two possible definitions of derivatives on a
lattice. The Leibniz rule for the left discrete derivative
can be written as

(∂pfg)(p) = (∂pf)(p)g(p) + f(p+ a)(∂pg)(p), (44)

with a similar formula for the right derivative [23].
Let us now introduce the momentum shift operators

T = 1 + a∂p, (45)
T̄ = 1 − a∂̄p, (46)

that shift the momentum value by a

(Tf)(p) = f(p+ a), (47)
(T̄ f)(p) = f(p − a), (48)

and satisfies
T T̄ = T̄ T = 1̂, (49)

where 1̂ means the identity on the algebra of functions of
p.

Introducing the momentum operator P [23]

(Pf)(p) = pf(p), (50)

we have

TP = (P + a)T, (51)
T̄P = (P − a)T̄ . (52)

Integrals can also be defined in this formalism. It is
shown in [23] that the property of an indefinite integral∫

df = f + periodic function ina, (53)

suffices to calculate the indefinite integral of an arbitrary
one form. It can be shown that [23] for an arbitrary func-
tion f

∫
dp̄f(p̄) =



a

∑[p/a]
k=1 f(p − ka), if p ≥ a,

0, if 0 ≤ p < a,

−a
∑−[p/a]−1

k=0 f(p+ ka), if p < 0,
(54)

where [p/a] is by definition the highest integer ≤ p/a.
All equalities involving indefinite integrals are under-

stood modulo the addition of an arbitrary function pe-
riodic in a. The corresponding definite integral is well
defined when the length of the interval is multiple of a.
Consider the integral of a function f from pd to pu (pu =
pd +Ma, where M is a positive integer) as

∫ pu

pd

dpf(p) = a

M∑
k=0

f(pd + ka). (55)

Using (55), an inner product of two (complex) functions
f and g can be defined as

〈f, g〉 =
∫ pu

pd

dpf(p)∗g(p), (56)

where ∗ indicates the complex conjugation of the function
f . The norm 〈f, f〉 ≥ 0 is zero only when f is identically
null. The set of equivalence classes3 of normalizable func-
tions f (〈f, f〉 is finite) is a Hilbert space. It can be shown
that [23]

〈f, Tg〉 = 〈T̄ f, g〉, (57)

so that
T̄ = T †, (58)

where T † is the adjoint operator of T . Equations (49) and
(58) show that T is a unitary operator. Moreover, it is easy
to see that P defined in (50) is an Hermitian operator and
from (58) one has

(i∂p)† = i∂̄p. (59)

Now, we go back to the realization of the deformed
Heisenberg algebra (36)–(38) in terms of physical opera-
tors. We can associate to the crystalline structure of Math-
ieu’s equation discussed in the previous section the one-
dimensional lattice we have just presented.

Observe that we can write J0 for the asymptotic Ince–
Goldstein solution to Mathieu’s equation, (34), as

J0 =
P

a
+

1
2

− a2

64

[(
2P
a

+ 1
)2

+ 1

]
+ · · · , (60)

where P is given in (50) and its application to the vector
states |m〉 appearing in (19)–(21) gives

P |m〉 = ma|m〉, m = 0, 1, · · · , (61)

and
T̄ |m〉 = |m+ 1〉, m = 0, 1, · · · , (62)

where T̄ and T = T̄ † are defined in (45)–(49).
With the definition of J0 given in (60) we see that εLn

given in (34) is the J0 eigenvalue of state |n〉 as we wanted.
Let us now define

A† = ST̄ , (63)
A = TS, (64)

3 Two functions are in the same equivalence class if their
values coincide on all lattice sites
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where

S2 =
P

a
− a2

64

[(
2P
a

+ 1
)2

− 1

]
+ · · · , (65)

such that S2 = J0 − α0 where α0, defined in (12), is εL0 .
Define an operator N by

N ≡ P

a
, (66)

such that,

N |m〉 = m|m〉, m = 0, 1, 2, · · · . (67)

In terms of this operator, J0 can be written as

J0 = N +
1
2

− a2

64

[
(2N + 1)2 + 1

]
+ · · · , (68)

that can be interpreted as J0 = εLN where εLN is εLn in (33)
with the operator N in place of variable n. Yet, note that
(51) and (52) can also be rewritten as

TN = (N + 1)T, (69)
T̄N = (N − 1)T̄ . (70)

It is easy to realize that A, A† and J0 defined in (60),
(63)–(65) satisfy the a-deformed algebra given in (36)–
(38). Consider firstly the relation between J0 and A†,

J0A
† = εLN ST̄ = A†εLN+1, (71)

where we have used the realizations in the first equality
of the above equation and in the second one we have used
(70). But from (35) εLN+1 = f(εLN ) = f(J0); thus we obtain

J0A
† = A†f(J0), (72)

that is, (36) for f(x) given in (35). Equation (37) is the
Hermitian conjugate of (36); then its proof using (64) and
(68) is similar to the previous one. Now, using

A†A = S2 = J0 − α0, (73)

AA† = TS2T̄ = f(J0) − α0, (74)

for f(x) defined in (35) we get to (38) and the proof is
complete.

Note that the realization we have found in (63), (64)
and (68) is qualitatively different from the realization of
the standard harmonic oscillator. This is reasonable, since
we have two physically different systems. Even if the stan-
dard harmonic oscillator defined on −∞ ≤ x ≤ ∞ is a
limiting case of the periodic one, it is not periodic having
no lattice associated to it. On the other hand, once L is
finite, −L ≤ x ≤ L, the periodic structure is explicitly
manifest and the realization in the finite case, given in
(63), (64) and (68), shows it clearly.

5 A deformed free quantum field theory

We are going to discuss in this section a free quantum
field theory based on the asymptotic solution to Mathieu’s
equation (an a-deformed harmonic oscillator) discussed in
the previous sections. The vector states of this quantum
field theory, eigenvectors of the Hamiltonian, are obtained
by the application of the creation operators A†, satisfying
the algebra defined in (36)–(38), to a vacuum state. Since
the algebra defined in (36)–(38) describes a Heisenberg-
type algebra for a deformed harmonic oscillator that we in-
terpreted as being the appropriate framework to describe
a quantum particle at very high energies (energies higher
than 103 GeV), the energy scale of this quantum field the-
ory would be very high.

Remember that we showed in Sect. 3 that the first lev-
els of Mathieu’s equation given in (27) for K = L4/π4

correspond to the first energy levels of Schrödinger’s equa-
tion for the harmonic oscillator when L → ∞ and that in
the previous section we discussed an asymptotic solution
to Mathieu’s equation, L finite but very large, that can
be seen as a deformed harmonic oscillator with a = π/L
being the deformation parameter.

As shown in the previous section, associated to the pe-
riodic structure of the asymptotic solution to Mathieu’s
equation for K = L4/π4, there is an one-dimensional lat-
tice with a = π/L being the lattice spacing. Using the
momentum operator P defined on a lattice, (50), and the
associated lattice derivatives we can define two type coor-
dinate operators by

χ = i(∂̄p + ∂p), (75)
Q = ∂̄p − ∂p, (76)

where ∂p and ∂̄p are the left and right discrete derivatives
defined in (42) and (43). Of course, in the continuous limit
(a → 0) operator Q is identically null since ∂p and ∂̄p

represent, in this limit, the same derivative.
It can be checked that the operators P , χ and Q gen-

erate an algebra on the momentum lattice [23]

[χ, P ] = 2i
(
1 − a

2
Q

)
, (77)

[P,Q] = −iaχ, (78)
[χ,Q] = 0. (79)

Note that, in the continuous limit a → 0, we recover the
standard Heisenberg algebra, [x, p] = i.

For the asymptotic solution to Mathieu’s equation pre-
sented in the last two previous sections, with the help of
(45) and (46, and (63) and (64), we can rewrite χ and Q
in terms of the ladder operators of the a-deformed Heisen-
berg algebra:

χ =
−i
a

(
S−1A† − AS−1) , (80)

Q =
1
a

(−2 + S−1A† +AS−1) , (81)

where S is defined in (65). We stress that A† and A are the
creation and annihilation operators, respectively, of the
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asymptotic solution to Mathieu’s equation presented in
the last two previous sections that satisfy the a-deformed
Heisenberg algebra in (36)–(38).

There is an important point to be explained here. As
was already stressed, Mathieu’s equation is a periodic
equation. Thus, the asymptotic solution we are consider-
ing takes into account this periodicity as well, even if the
interaction among the cells of the crystal is very small. It
can be inferred that the correlations are very small by ob-
serving that the energy of the asymptotic solution, given
in (33), does not depend on what happens in other lattice
cells.

Let us now introduce a three-dimensional discrete k-
space,

ki =
2πli
Li

, i = 1, 2, 3, (82)

with li = 0,±1,±2, · · · and Li, the lengths of the three
sides of a rectangular box Ω. We introduce for each point
of this k-space an independent a-deformed harmonic os-
cillator constructed in the last two previous sections such
that the deformed operators commute for different three-
dimensional lattice points. We also introduce an inde-
pendent copy of the one-dimensional momentum lattice
defined in the previous section for each point of this k-
lattice such that P †

k = Pk and Tk, T̄k and Sk are defined
by means of the previous definitions, (45), (46) and (65),
through the substitution P → Pk.

It is not difficult to realize that

A†
k = SkT̄k, (83)

Ak = TkSk, (84)

J0(k) =
Pk

a
+

1
2

− a2

64

[(
2
Pk

a
+ 1

)2

+ 1

]
+ · · · (85)

satisfy the algebra in (36)–(38) for each point of this k-
lattice and the operators A†

k, Ak and J0(k) commute with
them for different points of this k-lattice.

Now, we define the type coordinate operators for each
point of the three-dimensional lattice by

χk = i(∂̄pk
+ ∂p−k

), (86)

Qk = ∂̄pk
− ∂p−k

, (87)

such that χ†
k = χ−k and Q†

k = Q−k, exactly as occurs
in the construction of a spin-0 field for the spin-0 quan-
tum field theory [13]. With the previous definitions, (83)
and (84), and (86) and (87), we can rewrite the type co-
ordinate operators in terms of the ladder operators of the
a-deformed Heisenberg algebra

χk =
i
a

(
−S−1

−kA
†
−k +AkS

−1
k

)
, (88)

Qk =
1
a

(
−2 + S−1

−kA
†
−k +AkS

−1
k

)
. (89)

By means of χkSk and QkSk we define two fields
φ1(r, t) and φ2(r, t) by

φ1(r, t) =
∑

k

i√
2Ωω(k)

×
(
−S−1

k A†
kS−ke−ik.r +Akeik.r

)
, (90)

φ2(r, t) =
∑

k

1√
2Ωω(k)

(91)

×
(
−2Skeik.r + S−1

k A†
kS−ke−ik.r +Akeik.r

)
,

where ω(k) = (k2 + m2)1/2, m a real parameter and Ω
is the volume of a rectangular box. Two type momentum
fields Π(r, t) and ℘(r, t) can be defined as well by

Π(r, t) =
∑

k

√
ω(k)
Ω

Skeik.r, (92)

℘(r, t) =
∑

k

√
ω(k)
Ω

(93)

×
(

−3
2
Skeik.r + S−1

k A†
kS−ke−ik.r +Akeik.r

)
.

By a straightforward calculation, we can show that the
Hamiltonian

H =
∫

d3r
(
Π(r, t)†℘(r, t) + ℘(r, t)†Π(r, t)

+φ1(r, t)†(−∇2 +m2)φ1(r, t)

+ φ2(r, t)†(−∇2 +m2)φ2(r, t)
)
, (94)

can be written as

H =
∑

k

ω(k)A†
kAk =

∑
k

ω(k)S2
k

=
∑

k

ω(k)
(
Nk − a2

64

[
(2Nk + 1)2 − 1

]
+ · · ·

)
. (95)

The eigenvectors of H form a complete set and span the
Hilbert space of this system; they are

|0〉, A†
k|0〉, A†

kA
†
k′ |0〉 fork �= k′, (A†

k)
2|0〉, · · · , (96)

where the state |0〉 satisfies as usual Ak|0〉 = 0 (see (18))
for all k and Ak, A

†
k for each k satisfy the a-deformed

Heisenberg algebra (36)–(38).
One should note that even if we are considering a free

theory the energy of the system is non-extensive, i.e, the
energy of n particles is different from n times the energy
of one particle. The origin of this non-extensivity of the
energy of the system comes from the solution, (33), to
the Mathieu equation that we are considering and it is
connected to our choice of describing the system on a finite
line.

As stressed before, the deformed solutions we are con-
sidering correspond to the first levels of Mathieu’s equa-
tion for asymptotic K = L4/π4. Moreover, this equation
is periodic, while for L → ∞ these solutions correspond to
the first energy levels of the ordinary quantum harmonic
oscillator. This periodicity for L finite permits a special
realization of the a-deformed algebra in terms of physical
operators that are defined on a lattice of lattice spacing
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a = π/L (see (60), (63) and (64)). Since the realization
for L finite is different from the L = ∞ case, it is rea-
sonable to have different quantum field theories for these
two cases. However, it is very interesting to observe that
even if the QFT in the periodic and non-periodic regimes
are different, the limit a → 0 (L → ∞) in (95) gives the
standard spin-0 quantum Hamiltonian.

6 Final comments

We have found in this paper that the algebra underly-
ing the quantum harmonic oscillator on a large circle is
a deformed Heisenberg algebra. This deformed Heisen-
berg algebra is the Heisenberg-type structure of the first
levels, εLn , of Mathieu’s equation for asymptotic values of
K = L4/π4.

We have shown that the first levels of Mathieu’s equa-
tion with amplitude K = L4/π4 for L → ∞ correspond to
the first energy levels of the ordinary Schrödinger equation
for the one-dimensional harmonic oscillator. Then, anal-
ogously to the definition of a quantum particle through
the standard quantum one-dimensional harmonic oscilla-
tor we defined n quantum particles at very high energies
as having energy εLn ; that is, the nth energy eigenvalue of
Mathieu’s equation for asymptotic values of K = L4/π4.

By using the first energy eigenvalues of Mathieu’s
equation for asymptotic values of K = L4/π4 we have
constructed the associated Heisenberg-type algebra which
is a deformed Heisenberg algebra with deformation pa-
rameter given by a = π/L. The ladder operators of this
deformed algebra were realized in terms of physical oper-
ators belonging to a lattice, and using this realization, we
constructed a free deformed quantum field theory based
on this deformed algebra.

Since this QFT has a standard Hilbert space, it is in
principle possible to apply to this deformed theory the
standard methods of quantum field theory to compute the
matrix elements of different operators. We hope that the
mechanism of constructing a QFT with a scale parameter,
as presented in the last section of the paper, can be useful
when applied to more realistic theories.
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